铸态及快淬态 La₂ Mg(Ni_{0.85} Co_{0.15})₉B_{0.1} 贮氢合金

董小平1,2,张羊换1,2,王国清1,2,郭世海2,王新林2

(1. 内蒙古科技大学材料科学与工程学院,内蒙古 包头 014010; 2. 钢铁研究总院功能材料研究所,北京 100081)

摘要:铸态及快淬态 $La_2 Mg(Ni_{0.85}Co_{0.15})_9 B_{0.1}$ 贮氢合金主要由(La , Mg) Ni_3 相($PuNi_3$ 型结构)、 $LaNi_5$ 相及少量 $LaNi_2$ 相组成,铸态合金还含有微量的 Ni_2B 相。用高于 15 m/s 的淬速快淬后, Ni_2B 相几乎消失,各相的含量与快淬淬速有关。与铸态合金相比,快淬态合金放电平台电压降低,但随着淬速提高,放电容量、放电平台电压都存在一个最大值;快淬使合金的循环寿命有不同程度的提高。铸态和快淬态合金均具有良好的活化性能。

关键词:贮氢合金; 快淬工艺; 微观结构; 电化学性能

中图分类号: TM912.2 文献标识码: A 文章编号:1001-1579(2004)05-0316-03

La₂ Mg(Ni_{0.85}Co_{0.15})₉B_{0.1} hydrogen storage alloys prepared by casting and rapid quenching

DONG Xiao ping^{1,2}, ZHANG Yang-huan^{1,2}, WANG Sheqing^{1,2}, GUO Shehai², WANG Xin-lin²

(1. School of Material Science and Engineering, Inner Mongolia University of Science and Technology, Baotou, Neimengu 014010, Caira; 2. Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, China)

Abstract: The La $_2$ Mg(Ni $_{0.85}$ Co $_{0.15}$) $_9$ B $_{0.1}$ hydrogen storage alloys prepared by casting and rapid quenching were consisted of (La, Mg) Ni $_3$ phase (Pu Ni $_3$ -type structure), La Ni $_5$ phase and a little of La Ni $_2$ phase, the as-cast alloys contained a trace of Ni $_2$ B phase. When the quenching rate was higher than 15 m/s, the Ni $_2$ B phase in the alloys nearly disappeared, the relative amount of each phase in the alloys depended on the quenching rate. Contrasted with the as-cast alloys, discharge plateau voltage decreased in the as-quenched alloys, but the discharge capacity and discharge plateau voltage had a maximum value when varying the quenching rate. The cycle lives of the as-quenched alloys increased with the increase of quenching rate. The as-cast and as-quenched alloys had an excellent activation panomance.

Key words: hydroge for ge alloys; rapid quenching technique; microstructure; electroche mical properties

为提高贮氢材料的综合电化学性能,人们在寻找新型贮氢材料方面做了大量工作 $^{[1-2]}$ 。 K. Kadir 等 $^{[3]}$ 研究了一种具有 Pu Ni $_3$ 型结构、能够可逆吸放氢的三元金属间化合物 R Mg $_2$ Ni $_9$ (R = La 、Ce 、Pr 、Nd 、S m 和 Gd) 体系 ; H. Pan 等 $^{[4]}$ 对 Lar Mg Ni 系 (Pu Ni $_3$ 型) 贮氢合金电极的电化学性能进行了研究,发现最大放电容量达 398.4 mAh/g,但这些合金的循环稳定性要进一步改

善。为提高 Lar Mg Ni 系贮氢合金的电化学循环稳定性,本文作者在合金中加入微量的硼(B),并进行了不同淬速的快淬处理。

1 实验

合金所用金属 La 、Mg 、Ni 和 Co 的纯度均高于 99.8% ,B 元素纯度高于 99.93% ,化学配比为 La_2 $Mg(Ni_{0.85}Co_{0.15})_9B_{0.1}$ 。用

作者简介:

董小平(1975-),男,四川人,内蒙古科技大学材料科学与工程学院硕士生,研究方向:贮氢合金;

张羊换(1959-),男,内蒙古人,内蒙古科技大学材料科学与工程学院教授,研究方向:金属功能材料;

王国清(1980-)、女、内蒙古人、内蒙古科技大学材料科学与工程学院硕士生、研究方向:贮氢合金;

郭世海(1974-),男,内蒙古人,钢铁研究总院功能材料研究所博士生,研究方向:形状记忆合金;

王新林(1942-),男,山东人,钢铁研究总院功能材料研究所教授,研究方向:贮氢合金和非晶态、纳米晶合金。

基金项目: 国家自然科学基金资助项目 (500710510), 国家自然科学重点基金资助项目 (50131040)