可充镁电池有机电解液的研究进展

袁华堂, 刘秀生, 曹建胜, 焦丽芳, 赵 明, 王永梅

(南开大学新能源材料化学研究所,南开-天津大学联合研究院,天津 300071)

摘要:对有机格氏试剂盐系列电解质的研究进行了总结。镁的沉积过程是复杂的吸附过程。吸附物决定了沉积的形貌,对循环效率有很大影响。 $Mg(AX_{4,n}R_n)_2$ 型有机镁盐(其中 $A=Al \setminus B \setminus As \setminus P \setminus Sb \setminus Ta$ 和 Fe 等, $X=Cl \setminus Br$ 和 F,R=烷基或芳基)可以看作是 Lewis 碱 R_2Mg 和 Lewis 酸 $AX_{3-n}R^{'}_{n}$ 的反应产物,溶液中 Lewis 酸的浓度决定了电液的分解电位,R 基的含量决定可逆性的好坏,以 $THF/Bu_2Mg_-(AlCl_2Et)_2$ 体系性能最佳。

关键词: 可充镁电池; 格氏试剂盐; 有机电解质

中图分类号: TM912.9 文献标识码: A 文章编号: 1001-1579(2004)02-0138-03

The development of organic electrolyte for reclargeable magnesium battery

YUAN Hua-tang, LIU Xiu-sheng, CAO Jian-sheng, JIAO Li-fang, ZHAO Ming, WANG Yong-mei

(Institute of New Energy Material Chemistry, Nanka University, United Academy of Nankai-Tianjin University, Tianjin 20071, China)

Abstract: The development of organic electrolyte of magnesium battery was reviewed. Mg deposition-dissolution involved adsorption-desorption process. The specific absorbed species affected the final morphology of Mg deposition, which strongly affected the cycling efficiency of Mg deposit. The grignard salts of Mg($AX_{4-n}R_n$)₂ type (A=Al, B, As, P, Sb, Ta and Fe; X= Cl, Br and F, and R=alkyl or aryl) could be expected to be products of a reaction between anR₂Mg Lewis base which played a key role of the decomposition potential of electrolyte and an $AX_{3-n}R_n$ Lewis acid. The content of R groups was crucial for obtaining reversible magnesium deposition. The test performance was obtained with the solutions containing the THF/Bu₂Mg-(AlCl₂Et)₂.

Key words: rechargeath interesting desium batteries; ethereal solutions of grignard salts; organic electrolyte